1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
use std::collections::BinaryHeap;
use std::borrow::{Borrow};
use super::{
Graph,
Directed,
Undirected,
EdgeDirection,
EdgeType,
Outgoing,
Incoming,
Dfs,
};
use scored::MinScored;
use super::visit::{
Visitable,
VisitMap,
};
use super::unionfind::UnionFind;
use super::graph::{
NodeIndex,
IndexType,
};
pub use super::isomorphism::{
is_isomorphic,
is_isomorphic_matching,
};
pub use super::dijkstra::dijkstra;
pub fn is_cyclic_undirected<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>) -> bool
where Ty: EdgeType,
Ix: IndexType,
{
let mut edge_sets = UnionFind::new(g.node_count());
for edge in g.raw_edges() {
let (a, b) = (edge.source(), edge.target());
if !edge_sets.union(a.index(), b.index()) {
return true
}
}
false
}
pub fn is_cyclic<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>) -> bool
where Ty: EdgeType,
Ix: IndexType,
{
is_cyclic_undirected(g)
}
#[inline]
fn toposort_generic<N, E, Ix, G, F>(mut g: G, mut visit: F)
where Ix: IndexType,
G: Borrow<Graph<N, E, Directed, Ix>>,
F: FnMut(&mut G, NodeIndex<Ix>),
{
let mut ordered = g.borrow().visit_map();
let mut tovisit = Vec::new();
tovisit.extend(g.borrow().externals(Incoming));
while let Some(nix) = tovisit.pop() {
if ordered.is_visited(&nix) {
continue;
}
visit(&mut g, nix);
ordered.visit(nix);
for neigh in g.borrow().neighbors_directed(nix, Outgoing) {
if g.borrow().neighbors_directed(neigh, Incoming).all(|b| ordered.is_visited(&b)) {
tovisit.push(neigh);
}
}
}
}
pub fn is_cyclic_directed<N, E, Ix>(g: &Graph<N, E, Directed, Ix>) -> bool
where Ix: IndexType,
{
let mut n_ordered = 0;
toposort_generic(g, |_, _| n_ordered += 1);
n_ordered != g.node_count()
}
pub fn toposort<N, E, Ix>(g: &Graph<N, E, Directed, Ix>) -> Vec<NodeIndex<Ix>>
where Ix: IndexType,
{
let mut order = Vec::with_capacity(g.node_count());
toposort_generic(g, |_, ix| order.push(ix));
order
}
pub fn scc<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>) -> Vec<Vec<NodeIndex<Ix>>>
where Ty: EdgeType,
Ix: IndexType,
{
let mut dfs = Dfs::empty(g);
let mut finished = g.visit_map();
let mut finish_order = Vec::new();
for i in 0..g.node_count() {
let nindex = NodeIndex::new(i);
if dfs.discovered.is_visited(&nindex) {
continue
}
dfs.stack.push(nindex);
while let Some(&nx) = dfs.stack.last() {
if dfs.discovered.visit(nx) {
for succ in g.neighbors_directed(nx.clone(), EdgeDirection::Incoming) {
if !dfs.discovered.is_visited(&succ) {
dfs.stack.push(succ);
}
}
} else {
dfs.stack.pop();
if finished.visit(nx) {
finish_order.push(nx);
}
}
}
}
dfs.discovered.clear();
let mut sccs = Vec::new();
for &nindex in finish_order.iter().rev() {
if dfs.discovered.is_visited(&nindex) {
continue;
}
dfs.move_to(nindex);
let mut scc = Vec::new();
while let Some(nx) = dfs.next(g) {
scc.push(nx);
}
sccs.push(scc);
}
sccs
}
pub fn condensation<N, E, Ty, Ix>(g: Graph<N, E, Ty, Ix>, make_acyclic: bool) -> Graph<Vec<N>, E, Ty, Ix>
where Ty: EdgeType,
Ix: IndexType,
{
let sccs = scc(&g);
let mut condensed: Graph<Vec<N>, E, Ty, Ix> = Graph::with_capacity(sccs.len(), g.edge_count());
let mut node_map = vec![NodeIndex::end(); g.node_count()];
for comp in sccs {
let new_nix = condensed.add_node(Vec::new());
for nix in comp {
node_map[nix.index()] = new_nix;
}
}
let (nodes, edges) = g.into_nodes_edges();
for (nix, node) in nodes.into_iter().enumerate() {
condensed[node_map[nix]].push(node.weight);
}
for edge in edges {
let source = node_map[edge.source().index()];
let target = node_map[edge.target().index()];
if make_acyclic {
if source != target {
condensed.update_edge(source, target, edge.weight);
}
} else {
condensed.add_edge(source, target, edge.weight);
}
}
condensed
}
pub fn connected_components<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>) -> usize
where Ty: EdgeType,
Ix: IndexType,
{
let mut vertex_sets = UnionFind::new(g.node_count());
for edge in g.raw_edges() {
let (a, b) = (edge.source(), edge.target());
vertex_sets.union(a.index(), b.index());
}
let mut labels = vertex_sets.into_labeling();
labels.sort();
labels.dedup();
labels.len()
}
pub fn min_spanning_tree<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>)
-> Graph<N, E, Undirected, Ix>
where N: Clone,
E: Clone + PartialOrd,
Ty: EdgeType,
Ix: IndexType,
{
if g.node_count() == 0 {
return Graph::with_capacity(0, 0)
}
let mut mst = Graph::with_capacity(g.node_count(), g.node_count() - 1);
for node in g.raw_nodes() {
mst.add_node(node.weight.clone());
}
let mut subgraphs = UnionFind::new(g.node_count());
let mut sort_edges = BinaryHeap::with_capacity(g.edge_count());
for edge in g.raw_edges() {
sort_edges.push(MinScored(edge.weight.clone(), (edge.source(), edge.target())));
}
while let Some(MinScored(score, (a, b))) = sort_edges.pop() {
if subgraphs.union(a.index(), b.index()) {
mst.add_edge(a, b, score);
}
}
debug_assert!(mst.node_count() == g.node_count());
debug_assert!(mst.edge_count() < g.node_count());
mst
}