1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
//! Graph visitor algorithms.
//!

use fixedbitset::FixedBitSet;
use std::collections::{
    HashSet,
    VecDeque,
};
use std::hash::Hash;

use super::{
    graphmap,
    graph,
    EdgeType,
    EdgeDirection,
    Graph,
    GraphMap,
    Incoming,
    Outgoing,
};

use graph::{
    IndexType,
};
#[cfg(feature = "stable_graph")]
use graph::stable::StableGraph;

/// Base trait for graphs that defines the node identifier.
pub trait Graphlike {
    type NodeId: Clone;
}

/// NeighborIter gives access to the neighbors iterator.
pub trait NeighborIter<'a> : Graphlike {
    type Iter: Iterator<Item=Self::NodeId>;

    /// Return an iterator that visits all neighbors of the node **n**.
    fn neighbors(&'a self, n: Self::NodeId) -> Self::Iter;
}

impl<'a, N, E: 'a, Ty, Ix> NeighborIter<'a> for Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Iter = graph::Neighbors<'a, E, Ix>;
    fn neighbors(&'a self, n: graph::NodeIndex<Ix>) -> graph::Neighbors<'a, E, Ix>
    {
        Graph::neighbors(self, n)
    }
}

#[cfg(feature = "stable_graph")]
impl<'a, N, E: 'a, Ty, Ix> NeighborIter<'a> for StableGraph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Iter = graph::stable::Neighbors<'a, E, Ix>;
    fn neighbors(&'a self, n: graph::NodeIndex<Ix>)
        -> graph::stable::Neighbors<'a, E, Ix>
    {
        StableGraph::neighbors(self, n)
    }
}

impl<'a, N: 'a, E> NeighborIter<'a> for GraphMap<N, E>
where N: Copy + Ord + Hash
{
    type Iter = graphmap::Neighbors<'a, N>;
    fn neighbors(&'a self, n: N) -> graphmap::Neighbors<'a, N>
    {
        GraphMap::neighbors(self, n)
    }
}

/// Wrapper type for walking the graph as if it is undirected
pub struct AsUndirected<G>(pub G);

/// Wrapper type for walking the graph as if all edges are reversed.
pub struct Reversed<G>(pub G);

impl<'a, 'b, N, E: 'a, Ty, Ix> NeighborIter<'a> for AsUndirected<&'b Graph<N, E, Ty, Ix>> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Iter = graph::Neighbors<'a, E, Ix>;

    fn neighbors(&'a self, n: graph::NodeIndex<Ix>) -> graph::Neighbors<'a, E, Ix>
    {
        Graph::neighbors_undirected(self.0, n)
    }
}

impl<'a, 'b, N, E: 'a, Ty, Ix> NeighborIter<'a> for Reversed<&'b Graph<N, E, Ty, Ix>> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Iter = graph::Neighbors<'a, E, Ix>;
    fn neighbors(&'a self, n: graph::NodeIndex<Ix>) -> graph::Neighbors<'a, E, Ix>
    {
        Graph::neighbors_directed(self.0, n, EdgeDirection::Incoming)
    }
}

/// NeighborsDirected gives access to neighbors of both `Incoming` and `Outgoing`
/// edges of a node.
pub trait NeighborsDirected<'a> : Graphlike {
    type NeighborsDirected: Iterator<Item=Self::NodeId>;

    /// Return an iterator that visits all neighbors of the node **n**.
    fn neighbors_directed(&'a self, n: Self::NodeId,
                          d: EdgeDirection) -> Self::NeighborsDirected;
}

impl<'a, N, E: 'a, Ty, Ix> NeighborsDirected<'a> for Graph<N, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    type NeighborsDirected = graph::Neighbors<'a, E, Ix>;
    fn neighbors_directed(&'a self, n: graph::NodeIndex<Ix>,
                          d: EdgeDirection) -> graph::Neighbors<'a, E, Ix>
    {
        Graph::neighbors_directed(self, n, d)
    }
}

#[cfg(feature = "stable_graph")]
impl<'a, N, E: 'a, Ty, Ix> NeighborsDirected<'a> for StableGraph<N, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    type NeighborsDirected = graph::stable::Neighbors<'a, E, Ix>;
    fn neighbors_directed(&'a self, n: graph::NodeIndex<Ix>, d: EdgeDirection)
        -> graph::stable::Neighbors<'a, E, Ix>
    {
        StableGraph::neighbors_directed(self, n, d)
    }
}

impl<'a, 'b,  G> NeighborsDirected<'a> for Reversed<&'b G>
    where G: NeighborsDirected<'a>,
{
    type NeighborsDirected = <G as NeighborsDirected<'a>>::NeighborsDirected;
    fn neighbors_directed(&'a self, n: G::NodeId,
                          d: EdgeDirection) -> Self::NeighborsDirected
    {
        self.0.neighbors_directed(n, d.opposite())
    }
}

/// Externals returns an iterator of all nodes that either have either no
/// incoming or no outgoing edges.
pub trait Externals<'a> : Graphlike {
    type Externals: Iterator<Item=Self::NodeId>;

    /// Return an iterator of all nodes with no edges in the given direction
    fn externals(&'a self, d: EdgeDirection) -> Self::Externals;
}

impl<'a, N: 'a, E, Ty, Ix> Externals<'a> for Graph<N, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    type Externals = graph::Externals<'a, N, Ty, Ix>;
    fn externals(&'a self, d: EdgeDirection) -> graph::Externals<'a, N, Ty, Ix> {
        Graph::externals(self, d)
    }
}

impl<'a, 'b,  G> Externals<'a> for Reversed<&'b G>
    where G: Externals<'a>,
{
    type Externals = <G as Externals<'a>>::Externals;
    fn externals(&'a self, d: EdgeDirection) -> Self::Externals {
        self.0.externals(d.opposite())
    }
}

/// A mapping for storing the visited status for NodeId `N`.
pub trait VisitMap<N> {
    /// Return **true** if the value is not already present.
    fn visit(&mut self, N) -> bool;
    fn is_visited(&self, &N) -> bool;
}

impl<Ix> VisitMap<graph::NodeIndex<Ix>> for FixedBitSet where
    Ix: IndexType,
{
    fn visit(&mut self, x: graph::NodeIndex<Ix>) -> bool {
        let present = self.contains(x.index());
        self.insert(x.index());
        !present
    }
    fn is_visited(&self, x: &graph::NodeIndex<Ix>) -> bool {
        self.contains(x.index())
    }
}

impl<Ix> VisitMap<graph::EdgeIndex<Ix>> for FixedBitSet where
    Ix: IndexType,
{
    fn visit(&mut self, x: graph::EdgeIndex<Ix>) -> bool {
        let present = self.contains(x.index());
        self.insert(x.index());
        !present
    }
    fn is_visited(&self, x: &graph::EdgeIndex<Ix>) -> bool {
        self.contains(x.index())
    }
}

impl<N: Eq + Hash> VisitMap<N> for HashSet<N> {
    fn visit(&mut self, x: N) -> bool {
        self.insert(x)
    }
    fn is_visited(&self, x: &N) -> bool {
        self.contains(x)
    }
}

/// A graph that can create a visitor map.
pub trait Visitable : Graphlike {
    type Map: VisitMap<Self::NodeId>;
    fn visit_map(&self) -> Self::Map;
}

/// A graph that can reset and resize its visitor map.
pub trait Revisitable : Visitable {
    fn reset_map(&self, &mut Self::Map);
}

impl<N, E, Ty, Ix> Graphlike for Graph<N, E, Ty, Ix> where
    Ix: IndexType,
{
    type NodeId = graph::NodeIndex<Ix>;
}

impl<N, E, Ty, Ix> Visitable for Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Map = FixedBitSet;
    fn visit_map(&self) -> FixedBitSet { FixedBitSet::with_capacity(self.node_count()) }
}

impl<N, E, Ty, Ix> Revisitable for Graph<N, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    fn reset_map(&self, map: &mut Self::Map) {
        map.clear();
        map.grow(self.node_count());
    }
}

#[cfg(feature = "stable_graph")]
impl<N, E, Ty, Ix> Graphlike for StableGraph<N, E, Ty, Ix> where
    Ix: IndexType,
{
    type NodeId = graph::NodeIndex<Ix>;
}

#[cfg(feature = "stable_graph")]
impl<N, E, Ty, Ix> Visitable for StableGraph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Map = FixedBitSet;
    fn visit_map(&self) -> FixedBitSet { FixedBitSet::with_capacity(self.node_count()) }
}

#[cfg(feature = "stable_graph")]
impl<N, E, Ty, Ix> Revisitable for StableGraph<N, E, Ty, Ix>
    where Ty: EdgeType,
          Ix: IndexType,
{
    fn reset_map(&self, map: &mut Self::Map) {
        map.clear();
        map.grow(self.node_count());
    }
}

impl<'a, G> Revisitable for Reversed<&'a G>
    where G: Revisitable
{
    fn reset_map(&self, map: &mut Self::Map) {
        self.0.reset_map(map);
    }
}

impl<N: Clone, E> Graphlike for GraphMap<N, E>
{
    type NodeId = N;
}

impl<N, E> Visitable for GraphMap<N, E>
    where N: Copy + Ord + Hash
{
    type Map = HashSet<N>;
    fn visit_map(&self) -> HashSet<N> { HashSet::with_capacity(self.node_count()) }
}

impl<N, E> Revisitable for GraphMap<N, E>
    where N: Copy + Ord + Hash
{
    fn reset_map(&self, map: &mut Self::Map) {
        map.clear();
    }
}

impl<'a, G: Graphlike> Graphlike for AsUndirected<&'a G>
{
    type NodeId = G::NodeId;
}

impl<'a, G: Graphlike> Graphlike for Reversed<&'a G>
{
    type NodeId = G::NodeId;
}

impl<'a, G: Visitable> Visitable for AsUndirected<&'a G>
{
    type Map = G::Map;
    fn visit_map(&self) -> G::Map {
        self.0.visit_map()
    }
}

impl<'a, G: Visitable> Visitable for Reversed<&'a G>
{
    type Map = G::Map;
    fn visit_map(&self) -> G::Map {
        self.0.visit_map()
    }
}

/// Create or access the adjacency matrix of a graph
pub trait GetAdjacencyMatrix : Graphlike {
    type AdjMatrix;
    fn adjacency_matrix(&self) -> Self::AdjMatrix;
    fn is_adjacent(&self, matrix: &Self::AdjMatrix, a: Self::NodeId, b: Self::NodeId) -> bool;
}

/// The **GraphMap** keeps an adjacency matrix internally.
impl<N, E> GetAdjacencyMatrix for GraphMap<N, E>
    where N: Copy + Ord + Hash
{
    type AdjMatrix = ();
    #[inline]
    fn adjacency_matrix(&self) { }
    #[inline]
    fn is_adjacent(&self, _: &(), a: N, b: N) -> bool {
        self.contains_edge(a, b)
    }
}

/// A depth first search (DFS) of a graph.
///
/// Using a **Dfs** you can run a traversal over a graph while still retaining
/// mutable access to it, if you use it like the following example:
///
/// ```
/// use petgraph::{Graph, Dfs};
///
/// let mut graph = Graph::<_,()>::new();
/// let a = graph.add_node(0);
///
/// let mut dfs = Dfs::new(&graph, a);
/// while let Some(nx) = dfs.next(&graph) {
///     // we can access `graph` mutably here still
///     graph[nx] += 1;
/// }
///
/// assert_eq!(graph[a], 1);
/// ```
///
/// **Note:** The algorithm may not behave correctly if nodes are removed
/// during iteration. It may not necessarily visit added nodes or edges.
#[derive(Clone, Debug)]
pub struct Dfs<N, VM> {
    /// The stack of nodes to visit
    pub stack: Vec<N>,
    /// The map of discovered nodes
    pub discovered: VM,
}

impl<N, VM> Dfs<N, VM>
    where N: Clone,
          VM: VisitMap<N>,
{
    /// Create a new **Dfs**, using the graph's visitor map, and put **start**
    /// in the stack of nodes to visit.
    pub fn new<G>(graph: &G, start: N) -> Self
        where G: Visitable<NodeId=N, Map=VM>
    {
        let mut dfs = Dfs::empty(graph);
        dfs.move_to(start);
        dfs
    }

    /// Create a new **Dfs** using the graph's visitor map, and no stack.
    pub fn empty<G>(graph: &G) -> Self
        where G: Visitable<NodeId=N, Map=VM>
    {
        Dfs {
            stack: Vec::new(),
            discovered: graph.visit_map(),
        }
    }

    /// Keep the discovered map, but clear the visit stack and restart
    /// the dfs from a particular node.
    pub fn move_to(&mut self, start: N)
    {
        self.discovered.visit(start.clone());
        self.stack.clear();
        self.stack.push(start);
    }

    /// Return the next node in the dfs, or **None** if the traversal is done.
    pub fn next<'a, G>(&mut self, graph: &'a G) -> Option<N> where
        G: Graphlike<NodeId=N>,
        G: NeighborIter<'a>,
    {
        while let Some(node) = self.stack.pop() {
            for succ in graph.neighbors(node.clone()) {
                if self.discovered.visit(succ.clone()) {
                    self.stack.push(succ);
                }
            }

            return Some(node);
        }
        None
    }
}

/// An iterator for a depth first traversal of a graph.
pub struct DfsIter<'a, G: 'a + Visitable>
{
    graph: &'a G,
    dfs: Dfs<G::NodeId, G::Map>,
}

impl<'a, G: Visitable> DfsIter<'a, G>
{
    pub fn new(graph: &'a G, start: G::NodeId) -> Self
    {
        // Inline the code from Dfs::new to
        // work around rust bug #22841
        let mut dfs = Dfs::empty(graph);
        dfs.move_to(start);
        DfsIter {
            graph: graph,
            dfs: dfs,
        }
    }

    /// Keep the discovered map, but clear the visit stack and restart
    /// the DFS traversal from a particular node.
    pub fn move_to(&mut self, start: G::NodeId)
    {
        self.dfs.move_to(start)
    }
}

impl<'a, G: 'a + Visitable> Iterator for DfsIter<'a, G> where
    G: NeighborIter<'a>,
{
    type Item = G::NodeId;

    #[inline]
    fn next(&mut self) -> Option<G::NodeId>
    {
        self.dfs.next(self.graph)
    }

    fn size_hint(&self) -> (usize, Option<usize>)
    {
        // Very vauge info about size of traversal
        (self.dfs.stack.len(), None)
    }
}

impl<'a, G: Visitable> Clone for DfsIter<'a, G> where Dfs<G::NodeId, G::Map>: Clone
{
    fn clone(&self) -> Self {
        DfsIter {
            graph: self.graph,
            dfs: self.dfs.clone(),
        }
    }
}

/// A breadth first search (BFS) of a graph.
///
/// Using a **Bfs** you can run a traversal over a graph while still retaining
/// mutable access to it, if you use it like the following example:
///
/// ```
/// use petgraph::{Graph, Bfs};
///
/// let mut graph = Graph::<_,()>::new();
/// let a = graph.add_node(0);
///
/// let mut bfs = Bfs::new(&graph, a);
/// while let Some(nx) = bfs.next(&graph) {
///     // we can access `graph` mutably here still
///     graph[nx] += 1;
/// }
///
/// assert_eq!(graph[a], 1);
/// ```
///
/// **Note:** The algorithm may not behave correctly if nodes are removed
/// during iteration. It may not necessarily visit added nodes or edges.
#[derive(Clone)]
pub struct Bfs<N, VM> {
    /// The queue of nodes to visit
    pub stack: VecDeque<N>,
    /// The map of discovered nodes
    pub discovered: VM,
}

impl<N, VM> Bfs<N, VM>
    where N: Clone,
          VM: VisitMap<N>,
{
    /// Create a new **Bfs**, using the graph's visitor map, and put **start**
    /// in the stack of nodes to visit.
    pub fn new<G>(graph: &G, start: N) -> Self
        where G: Visitable<NodeId=N, Map=VM>
    {
        let mut discovered = graph.visit_map();
        discovered.visit(start.clone());
        let mut stack = VecDeque::new();
        stack.push_front(start.clone());
        Bfs {
            stack: stack,
            discovered: discovered,
        }
    }

    /// Return the next node in the dfs, or **None** if the traversal is done.
    pub fn next<'a, G>(&mut self, graph: &'a G) -> Option<N> where
        G: Graphlike<NodeId=N>,
        G: NeighborIter<'a>,
    {
        while let Some(node) = self.stack.pop_front() {
            for succ in graph.neighbors(node.clone()) {
                if self.discovered.visit(succ.clone()) {
                    self.stack.push_back(succ);
                }
            }

            return Some(node);
        }
        None
    }

}

/// An iterator for a breadth first traversal of a graph.
pub struct BfsIter<'a, G: 'a + Visitable> {
    graph: &'a G,
    bfs: Bfs<G::NodeId, G::Map>,
}

impl<'a, G: Visitable> BfsIter<'a, G> where
    G::NodeId: Clone,
{
    pub fn new(graph: &'a G, start: G::NodeId) -> Self
    {
        // Inline the code from Bfs::new to
        // work around rust bug #22841
        let mut discovered = graph.visit_map();
        discovered.visit(start.clone());
        let mut stack = VecDeque::new();
        stack.push_front(start.clone());
        let bfs = Bfs {
            stack: stack,
            discovered: discovered,
        };
        BfsIter {
            graph: graph,
            bfs: bfs,
        }
    }
}

impl<'a, G: 'a + Visitable> Iterator for BfsIter<'a, G> where
    G::NodeId: Clone,
    G: NeighborIter<'a>,
{
    type Item = G::NodeId;
    fn next(&mut self) -> Option<G::NodeId>
    {
        self.bfs.next(self.graph)
    }

    fn size_hint(&self) -> (usize, Option<usize>)
    {
        (self.bfs.stack.len(), None)
    }
}

impl<'a, G: Visitable> Clone for BfsIter<'a, G> where Bfs<G::NodeId, G::Map>: Clone
{
    fn clone(&self) -> Self {
        BfsIter {
            graph: self.graph,
            bfs: self.bfs.clone(),
        }
    }
}


/// A topological order traversal for a graph.
#[derive(Clone)]
pub struct Topo<N, VM> {
    tovisit: Vec<N>,
    ordered: VM,
}

impl<N, VM> Topo<N, VM>
    where N: Clone,
          VM: VisitMap<N>,
{
    /// Create a new `Topo`, using the graph's visitor map, and put all
    /// initial nodes in the to-visit list.
    pub fn new<'a, G>(graph: &'a G) -> Self
        where G: Externals<'a> + Visitable<NodeId=N, Map=VM>,
    {
        let mut topo = Self::empty(graph);
        topo.tovisit.extend(graph.externals(Incoming));
        topo
    }

    /* Private until it has a use */
    /// Create a new `Topo`, using the graph's visitor map with *no* starting
    /// index specified.
    fn empty<G>(graph: &G) -> Self
        where G: Visitable<NodeId=N, Map=VM>
    {
        Topo {
            ordered: graph.visit_map(),
            tovisit: Vec::new(),
        }
    }

    /// Clear visited state, and put all initial nodes into the visit list.
    pub fn reset<'a, G>(&mut self, graph: &'a G)
        where G: Externals<'a> + Revisitable<NodeId=N, Map=VM>,
    {
        graph.reset_map(&mut self.ordered);
        self.tovisit.clear();
        self.tovisit.extend(graph.externals(Incoming));
    }

    /// Return the next node in the current topological order traversal, or
    /// `None` if the traversal is at the end.
    ///
    /// *Note:* The graph may not have a complete topological order, and the only
    /// way to know is to run the whole traversal and make sure it visits every node.
    pub fn next<'a, G>(&mut self, g: &'a G) -> Option<N>
        where G: NeighborsDirected<'a> + Visitable<NodeId=N, Map=VM>,
    {
        // Take an unvisited element and find which of its neighbors are next
        while let Some(nix) = self.tovisit.pop() {
            if self.ordered.is_visited(&nix) {
                continue;
            }
            self.ordered.visit(nix.clone());
            for neigh in g.neighbors_directed(nix.clone(), Outgoing) {
                // Look at each neighbor, and those that only have incoming edges
                // from the already ordered list, they are the next to visit.
                if g.neighbors_directed(neigh.clone(), Incoming).all(|b| self.ordered.is_visited(&b)) {
                    self.tovisit.push(neigh);
                }
            }
            return Some(nix);
        }
        None
    }
}

/// A topological order traversal for a subgraph.
///
/// SubTopo starts at a node, and does a topological order traversal of
/// all nodes reachable from the starting point.
#[derive(Clone)]
pub struct SubTopo<N, VM> {
    tovisit: Vec<N>,
    notvisited: VecDeque<N>,
    ordered: VM,
}

impl<N, VM> SubTopo<N, VM>
    where N: Clone,
          VM: VisitMap<N>,
{
    /// Create a new `SubTopo`, using the graph's visitor map, and put single
    /// node in the to-visit list.
    pub fn from_node<'a, G>(graph: &'a G, node: N) -> Self
        where G: Externals<'a> + Visitable<NodeId=N, Map=VM>,
    {
        let mut topo = Self::empty(graph);
        topo.tovisit.push(node);
        topo
    }

    /* Private until it has a use */
    /// Create a new `SubTopo`, using the graph's visitor map with *no* starting
    /// index specified.
    fn empty<G>(graph: &G) -> Self
        where G: Visitable<NodeId=N, Map=VM>
    {
        SubTopo {
            ordered: graph.visit_map(),
            tovisit: Vec::new(),
            notvisited: VecDeque::new(),
        }
    }

    /// Clear visited state, and put a single node into the visit list.
    pub fn reset_with_node<'a, G>(&mut self, graph: &'a G, node: N)
        where G: Revisitable<NodeId=N, Map=VM>,
    {
        graph.reset_map(&mut self.ordered);
        self.tovisit.clear();
        self.tovisit.push(node);
    }

    /// Return the next node in the current topological order traversal, or
    /// `None` if the traversal is at the end.
    ///
    /// *Note:* The subgraph may not have a complete topological order.
    /// If there is a cycle in the subgraph, then nodes of that cycle *are* included in this traversal. 
    pub fn next<'a, G>(&mut self, g: &'a G) -> Option<N>
        where G: NeighborsDirected<'a> + Visitable<NodeId=N, Map=VM>,
    {
        // Take an unvisited element and find which of its neighbors are next
        loop {
            while let Some(nix) = self.tovisit.pop() {
                if self.ordered.is_visited(&nix) {
                    continue;
                }
                self.ordered.visit(nix.clone());
                for neigh in g.neighbors_directed(nix.clone(), Outgoing) {
                    // Look at each neighbor, and those that only have incoming edges
                    // from the already ordered list, they are the next to visit.
                    if g.neighbors_directed(neigh.clone(), Incoming).all(|b| self.ordered.is_visited(&b)) {
                        self.tovisit.push(neigh);
                    } else {
                        self.notvisited.push_back(neigh);
                    }
                }
                return Some(nix);
            }
            if let Some(nix) = self.notvisited.pop_front() {
                self.tovisit.push(nix);
            } else {
                return None;
            }
        }
    }
}