1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
//! A crate of fundamentals for audio PCM DSP. //! //! - Use the [**Sample** trait](./trait.Sample.html) to remain generic across bit-depth. //! - Use the [**Frame** trait](./frame/trait.Frame.html) to remain generic over channel layout. //! - Use the [**Signal** trait](./signal/trait.Signal.html) for working with **Iterators** that yield **Frames**. //! - Use the [**slice** module](./slice/index.html) for working with slices of **Samples** and **Frames**. //! - See the [**conv** module](./conv/index.html) for fast conversions between slices, frames and samples. //! - See the [**types** module](./types/index.html) for provided custom sample types. //! - See the [**rate** module](./rate/index.html) for sample rate conversion and scaling. #![recursion_limit="512"] #![cfg_attr(not(feature = "std"), no_std)] #![cfg_attr(not(feature = "std"), feature(alloc, collections, core_intrinsics))] #[cfg(feature = "std")] extern crate core; #[cfg(not(feature = "std"))] extern crate alloc; #[cfg(not(feature = "std"))] #[macro_use] extern crate collections; #[cfg(not(feature = "std"))] type Vec<T> = collections::vec::Vec<T>; #[cfg(feature = "std")] type Vec<T> = std::vec::Vec<T>; #[cfg(not(feature = "std"))] type VecDeque<T> = collections::vec_deque::VecDeque<T>; #[cfg(feature = "std")] type VecDeque<T> = std::collections::vec_deque::VecDeque<T>; #[cfg(not(feature = "std"))] pub type Box<T> = alloc::boxed::Box<T>; #[cfg(feature = "std")] pub type Box<T> = std::boxed::Box<T>; #[cfg(not(feature = "std"))] type Rc<T> = alloc::rc::Rc<T>; #[cfg(feature = "std")] type Rc<T> = std::rc::Rc<T>; pub use conv::{ FromSample, ToSample, Duplex, FromSampleSlice, ToSampleSlice, DuplexSampleSlice, FromSampleSliceMut, ToSampleSliceMut, DuplexSampleSliceMut, FromBoxedSampleSlice, ToBoxedSampleSlice, DuplexBoxedSampleSlice, FromFrameSlice, ToFrameSlice, DuplexFrameSlice, FromFrameSliceMut, ToFrameSliceMut, DuplexFrameSliceMut, FromBoxedFrameSlice, ToBoxedFrameSlice, DuplexBoxedFrameSlice, DuplexSlice, DuplexSliceMut, DuplexBoxedSlice, }; pub use frame::Frame; pub use signal::Signal; pub use types::{I24, U24, I48, U48}; pub mod slice; pub mod conv; pub mod frame; pub mod signal; pub mod rate; pub mod types; #[cfg(not(feature = "std"))] fn floor(x: f64) -> f64 { unsafe { core::intrinsics::floorf64(x) } } #[cfg(feature = "std")] fn floor(x: f64) -> f64 { x.floor() } #[cfg(not(feature = "std"))] fn sin(x: f64) -> f64 { unsafe { core::intrinsics::sinf64(x) } } #[cfg(feature = "std")] fn sin(x: f64) -> f64 { x.sin() } #[cfg(not(feature = "std"))] fn sqrt_f32(x: f32) -> f32 { unsafe { core::intrinsics::sqrtf32(x) } } #[cfg(feature = "std")] fn sqrt_f32(x: f32) -> f32 { x.sqrt() } #[cfg(not(feature = "std"))] fn sqrt_f64(x: f64) -> f64 { unsafe { core::intrinsics::sqrtf64(x) } } #[cfg(feature = "std")] fn sqrt_f64(x: f64) -> f64 { x.sqrt() } /// A trait for working generically across different **Sample** format types. /// /// Provides methods for converting to and from any type that implements the /// [`FromSample`](./trait.FromSample.html) trait and provides methods for performing signal /// amplitude addition and multiplication. /// /// # Example /// /// ```rust /// extern crate sample; /// /// use sample::{I24, Sample}; /// /// fn main() { /// assert_eq!((-1.0).to_sample::<u8>(), 0); /// assert_eq!(0.0.to_sample::<u8>(), 128); /// assert_eq!(0i32.to_sample::<u32>(), 2_147_483_648); /// assert_eq!(I24::new(0).unwrap(), Sample::from_sample(0.0)); /// assert_eq!(0.0, Sample::equilibrium()); /// } /// ``` pub trait Sample: Copy + Clone + PartialOrd + PartialEq { /// When summing two samples of a signal together, it is necessary for both samples to be /// represented in some signed format. This associated `Addition` type represents the format to /// which `Self` should be converted for optimal `Addition` performance. /// /// For example, u32's optimal `Addition` type would be i32, u8's would be i8, f32's would be /// f32, etc. /// /// Specifying this as an associated type allows us to automatically determine the optimal, /// lossless Addition format type for summing any two unique `Sample` types together. /// /// As a user of the `sample` crate, you will never need to be concerned with this type unless /// you are defining your own unique `Sample` type(s). type Signed: SignedSample + Duplex<Self>; /// When multiplying two samples of a signal together, it is necessary for both samples to be /// represented in some signed, floating-point format. This associated `Multiplication` type /// represents the format to which `Self` should be converted for optimal `Multiplication` /// performance. /// /// For example, u32's optimal `Multiplication` type would be f32, u64's would be f64, i8's /// would be f32, etc. /// /// Specifying this as an associated type allows us to automatically determine the optimal, /// lossless Multiplication format type for multiplying any two unique `Sample` types together. /// /// As a user of the `sample` crate, you will never need to be concerned with this type unless /// you are defining your own unique `Sample` type(s). type Float: FloatSample + Duplex<Self>; /// The equilibrium value for the wave that this `Sample` type represents. This is normally the /// value that is equal distance from both the min and max ranges of the sample. /// /// # Example /// /// ```rust /// extern crate sample; /// /// use sample::Sample; /// /// fn main() { /// assert_eq!(0.0, f32::equilibrium()); /// assert_eq!(0, i32::equilibrium()); /// assert_eq!(128, u8::equilibrium()); /// assert_eq!(32_768_u16, Sample::equilibrium()); /// } /// ``` /// /// **Note:** This will likely be changed to an "associated const" if the feature lands. fn equilibrium() -> Self; /// The multiplicative identity of the signal. /// /// In other words: A value which when used to scale/multiply the amplitude or frequency of a /// signal, returns the same signal. /// /// This is useful as a default, non-affecting amplitude or frequency multiplier. /// /// # Example /// /// ```rust /// extern crate sample; /// /// use sample::{Sample, U48}; /// /// fn main() { /// assert_eq!(1.0, f32::identity()); /// assert_eq!(1.0, i8::identity()); /// assert_eq!(1.0, u8::identity()); /// assert_eq!(1.0, U48::identity()); /// } /// ``` #[inline] fn identity() -> Self::Float { <Self::Float as FloatSample>::identity() } /// Convert `self` to any type that implements `FromSample<Self>`. /// /// # Example /// /// ```rust /// extern crate sample; /// /// use sample::Sample; /// /// fn main() { /// assert_eq!(0.0.to_sample::<i32>(), 0); /// assert_eq!(0.0.to_sample::<u8>(), 128); /// assert_eq!((-1.0).to_sample::<u8>(), 0); /// } /// ``` #[inline] fn to_sample<S>(self) -> S where Self: ToSample<S>, { self.to_sample_() } /// Create a `Self` from any type that implements `ToSample<Self>`. /// /// # Example /// /// ```rust /// extern crate sample; /// /// use sample::{Sample, I24}; /// /// fn main() { /// assert_eq!(f32::from_sample(128_u8), 0.0); /// assert_eq!(i8::from_sample(-1.0), -128); /// assert_eq!(I24::from_sample(0.0), I24::new(0).unwrap()); /// } /// ``` #[inline] fn from_sample<S>(s: S) -> Self where Self: FromSample<S>, { FromSample::from_sample_(s) } /// Converts `self` to the equivalent `Sample` in the associated `Signed` format. /// /// This is a simple wrapper around `Sample::to_sample` which may provide extra convenience in /// some cases, particularly for assisting type inference. /// /// # Example /// /// ```rust /// extern crate sample; /// /// use sample::Sample; /// /// fn main() { /// assert_eq!(128_u8.to_signed_sample(), 0i8); /// } /// ``` fn to_signed_sample(self) -> Self::Signed { self.to_sample() } /// Converts `self` to the equivalent `Sample` in the associated `Float` format. /// /// This is a simple wrapper around `Sample::to_sample` which may provide extra convenience in /// some cases, particularly for assisting type inference. /// /// # Example /// /// ```rust /// extern crate sample; /// /// use sample::Sample; /// /// fn main() { /// assert_eq!(128_u8.to_float_sample(), 0.0); /// } /// ``` fn to_float_sample(self) -> Self::Float { self.to_sample() } /// Adds (or "offsets") the amplitude of the `Sample` by the given signed amplitude. /// /// `Self` will be converted to `Self::Signed`, the addition will occur and then the result /// will be converted back to `Self`. These conversions allow us to correctly handle the /// addition of unsigned signal formats. /// /// # Example /// /// ```rust /// extern crate sample; /// /// use sample::Sample; /// /// fn main() { /// assert_eq!(0.25.add_amp(0.5), 0.75); /// assert_eq!(192u8.add_amp(-128), 64); /// } /// ``` #[inline] fn add_amp(self, amp: Self::Signed) -> Self { let self_s = self.to_signed_sample(); (self_s + amp).to_sample() } /// Multiplies (or "scales") the amplitude of the `Sample` by the given float amplitude. /// /// - `amp` > 1.0 amplifies the sample. /// - `amp` < 1.0 attenuates the sample. /// - `amp` == 1.0 yields the same sample. /// - `amp` == 0.0 yields the `Sample::equilibrium`. /// /// `Self` will be converted to `Self::Float`, the multiplication will occur and then the /// result will be converted back to `Self`. These conversions allow us to correctly handle the /// multiplication of integral signal formats. /// /// # Example /// /// ```rust /// extern crate sample; /// /// use sample::Sample; /// /// fn main() { /// assert_eq!(64_i8.mul_amp(0.5), 32); /// assert_eq!(0.5.mul_amp(-2.0), -1.0); /// assert_eq!(64_u8.mul_amp(0.0), 128); /// } /// ``` #[inline] fn mul_amp(self, amp: Self::Float) -> Self { let self_f = self.to_float_sample(); (self_f * amp).to_sample() } } /// A macro used to simplify the implementation of `Sample`. macro_rules! impl_sample { ($($T:ty: Signed: $Addition:ty, Float: $Modulation:ty, equilibrium: $equilibrium:expr),*) => { $( impl Sample for $T { type Signed = $Addition; type Float = $Modulation; #[inline] fn equilibrium() -> Self { $equilibrium } } )* } } // Expands to `Sample` implementations for all of the following types. impl_sample!{ i8: Signed: i8, Float: f32, equilibrium: 0, i16: Signed: i16, Float: f32, equilibrium: 0, I24: Signed: I24, Float: f32, equilibrium: types::i24::EQUILIBRIUM, i32: Signed: i32, Float: f32, equilibrium: 0, I48: Signed: I48, Float: f64, equilibrium: types::i48::EQUILIBRIUM, i64: Signed: i64, Float: f64, equilibrium: 0, u8: Signed: i8, Float: f32, equilibrium: 128, u16: Signed: i16, Float: f32, equilibrium: 32_768, U24: Signed: i32, Float: f32, equilibrium: types::u24::EQUILIBRIUM, u32: Signed: i32, Float: f32, equilibrium: 2_147_483_648, U48: Signed: i64, Float: f64, equilibrium: types::u48::EQUILIBRIUM, u64: Signed: i64, Float: f64, equilibrium: 9_223_372_036_854_775_808, f32: Signed: f32, Float: f32, equilibrium: 0.0, f64: Signed: f64, Float: f64, equilibrium: 0.0 } /// Integral and floating-point **Sample** format types whose equilibrium is at 0. /// /// **Sample**s often need to be converted to some mutual **SignedSample** type for signal /// addition. pub trait SignedSample: Sample<Signed=Self> + core::ops::Add<Output=Self> + core::ops::Sub<Output=Self> + core::ops::Neg<Output=Self> {} macro_rules! impl_signed_sample { ($($T:ty)*) => { $( impl SignedSample for $T {} )* } } impl_signed_sample!(i8 i16 I24 i32 I48 i64 f32 f64); /// Sample format types represented as floating point numbers. /// /// **Sample**s often need to be converted to some mutual **FloatSample** type for signal scaling /// and modulation. pub trait FloatSample: Sample<Signed=Self, Float=Self> + SignedSample + core::ops::Mul<Output=Self> + core::ops::Div<Output=Self> + Duplex<f32> + Duplex<f64> { /// Represents the multiplicative identity of the floating point signal. fn identity() -> Self; /// Calculate the square root of `Self`. A convenience generic wrapper around `.sqrt()`. fn sample_sqrt(self) -> Self; } impl FloatSample for f32 { #[inline] fn identity() -> Self { 1.0 } #[inline] fn sample_sqrt(self) -> Self { sqrt_f32(self) } } impl FloatSample for f64 { #[inline] fn identity() -> Self { 1.0 } #[inline] fn sample_sqrt(self) -> Self { sqrt_f64(self) } }